
NWB Storage
Release v1.0.0

Jan 07, 2020





Table of Contents

1 NWB:N Storage 1
1.1 What is the role of data storage? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 How are NWB:N files stored? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Are backends other than HDF5 supported? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 HDF5 3
2.1 Format Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Key Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.4 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.5 dtype mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Caching format specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Release Notes 9
3.1 NWB:N - v2.1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 NWB:N - v2.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 NWB:N - v2.0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 NWB:N - v1.0.x and earlier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Credits 11
4.1 Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 NWB:N: Version 2.0.0 and later . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Legal 13
5.1 Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Indices and tables 15

i



ii



CHAPTER 1

NWB:N Storage

1.1 What is the role of data storage?

The NWB:N format specification defined using the NWB:N specification language describes how to organize large
collections of neuroscience data using basic primitives, e.g., Files, Groups, Datasets, Attributes, and Links to describe
and hierarchically group data. The role of the data storage then is to store large collections of neuroscience data. In
other words, the role of the storage is to map NWB:N primitives (and types, i.e., neurodata_types) to persistent storage.
For an overview of the various components of the NWB:N project see here .

1.2 How are NWB:N files stored?

The NWB:N format currently uses HDF5 as primary storage mechanism. The mapping of the NWB:N format to
HDF5 files is described in more detail in Section 2.

1.3 Are backends other than HDF5 supported?

NWB:N currently only officially supports HDF5 as main storage backend. However, the PyNWB API has been
designed to enable the design of custom read/write backends for the API, enabling other storage backends to be
mapped to NWB:N.

1

http://nwb-schema.readthedocs.io/en/latest/index.html
http://schema-language.readthedocs.io/en/latest/index.html
https://neurodatawithoutborders.github.io/overview


NWB Storage, Release v1.0.0

2 Chapter 1. NWB:N Storage



CHAPTER 2

HDF5

The NWB:N format currently uses the Hierarchical Data Format (HDF5) as the primary mechanism for data storage.
HDF5 was selected for the NWB format because it met several of the project’s requirements. First, it is a mature
data format standard with libraries available in multiple programming languages. Second, the format’s hierarchical
structure allows data to be grouped into logical self-documenting sections. Its structure is analogous to a file system
in which its “groups” and “datasets” correspond to directories and files. Groups and datasets can have attributes that
provide additional details, such as authorities’ identifiers. Third, its linking feature enables data stored in one location
to be transparently accessed from multiple locations in the hierarchy. The linked data can be external to the file.
Fourth, HDF5 is widely supported across programming languages (e.g., C, C++, Python, MATLAB, R among others)
and tools, such as, HDFView, a free, cross-platform application, can be used to open a file and browse data. Finally,
ensuring the ongoing accessibility of HDF-stored data is the mission of The HDF Group, the nonprofit that is the
steward of the technology.

2.1 Format Mapping

Here we describe the mapping of NWB primitives (e.g., Groups, Datasets, Attributes, Links, etc.) used by the NWB
format and specification to HDF5 storage primitives. As the NWB:N format was designed with HDF5 in mind, the
high-level mapping between the format specification and HDF5 is quite simple:

Table 2.1: Mapping of groups
NWB Primitive HDF5 Primitive
Group Group
Dataset Dataset
Attribute Attribute
Link Soft Link or External Link

Note: Using HDF5, NWB links are stored as HDF5 Soft Links or External Links. Hard Links are not used in
NWB because the primary location and, hence, primary ownership and link path for secondary locations, cannot be
determined for Hard Links.

3

https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/products/java/hdfview/


NWB Storage, Release v1.0.0

2.2 Key Mapping

Here we describe the mapping of keys from the specification language to HDF5 storage objects:

2.2.1 Groups

Table 2.2: Mapping of groups
NWB Key HDF5
name Name of the Group in HDF5
doc HDF5 attribute doc on the HDF5 group
groups HDF5 groups within the HDF5 group
datasets HDF5 datasets within the HDF5 group
attributes HDF5 attributes on the HDF5 group
links HDF5 SoftLinks within the HDF5 group
linkable Not mapped; Stored in schema only
quantity Not mapped; Number of appearances of the dataset.
neurodata_type Attribute neurodata_type
namespace ID Attribute namespace
object ID Attribute object_id

2.2.2 Datasets

Table 2.3: Mapping of datasets
NWB Key HDF5
name Name of the dataset in HDF5
doc HDF5 attribute doc on the HDF5 dataset
dtype Data type of the HDF5 dataset (see dtype mappings table)
shape Shape of the HDF5 dataset if the shape is fixed, otherwise shape defines the

maxshape
dims Not mapped
attributes HDF5 attributes on the HDF5 group
linkable Not mapped; Stored in schema only
quantity Not mapped; Number of appearances of the dataset.
neurodata_type Attribute neurodata_type
namespace ID Attribute namespace
object ID Attribute object_id

Note:

• TODO Update mapping of dims

2.2.3 Attributes

4 Chapter 2. HDF5



NWB Storage, Release v1.0.0

Table 2.4: Mapping of attributes
NWB Key HDF5
name Name of the attribute in HDF5
doc Not mapped; Stored in schema only
dtype Data type of the HDF5 attribute
shape Shape of the HDF5 dataset if the shape is fixed, otherwise shape defines the

maxshape
dims Not mapped; Reflected by the shape of the attribute data
required Not mapped; Stored in schema only
value Data value of the attribute

2.2.4 Links

Table 2.5: Mapping of links
NWB Key HDF5
name Name of the HDF5 Soft Link
doc Not mapped; Stored in schema only
target_type Not mapped. The target type is determined by the type of the target of the

HDF5 link

2.2.5 dtype mappings

The mappings of data types is as follows

2.2. Key Mapping 5



NWB Storage, Release v1.0.0

dtype spec value storage type size

• “float”
• “float32”

single precision floating point 32 bit

• “double”
• “float64”

double precision floating point 64 bit

• “long”
• “int64”

signed 64 bit integer 64 bit

• “int”
• “int32”

signed 32 bit integer 32 bit

• “int16”
signed 16 bit integer 16 bit

• “int8”
signed 8 bit integer 8 bit

• “uint32”
unsigned 32 bit integer 32 bit

• “uint16”
unsigned 16 bit integer 16 bit

• “uint8”
unsigned 8 bit integer 8 bit

• “bool”
boolean 8 bit

• “text”
• “utf”
• “utf8”
• “utf-8”

unicode variable

• “ascii”
• “str”

ascii variable

• “ref”
• “reference”
• “object”

Reference to another group or
dataset

• region
Reference to a region of another
dataset

• compound dtype
HDF5 compound data type

• “isodatetime”
ASCII ISO8061 date-
time string. For example
2018-09-28T14:43:54.
123+02:00

variable

6 Chapter 2. HDF5



NWB Storage, Release v1.0.0

2.3 Caching format specifications

In practice it is useful to cache the specification a file was created with (including extensions) directly in the HDF5
file. Caching the specification in the file ensures that users can access the specification directly if necessary without
requiring external resources. However, the mechanisms for caching format specifications is likely different for different
storage backends and is not part of the NWB:N format specification itself. For the HDF5 backend, caching of the
schema is implemented as follows.

The HDF5 backend adds the reserved top-level group /specifications in which all format specifications (includ-
ing extensions) are cached. The /specifications group contains for each specification namespace a subgroup
/specifications/<namespace-name>/<version> in which the specification for a particular version of a
namespace are stored (e.g., /specifications/core/2.0.1 in the case of the NWB:N core namespace at ver-
sion 2.0.1). The actual specification data is then stored as a JSON string in scalar datasets with a binary, variable-length
string data type (e.g., dtype=special_dtype(vlen=binary_type) in Python). The specification of the
namespace is stored in /specifications/<namespace-name>/<version>/namespace while additional
source files are stored in /specifications/<namespace-name>/<version>/<source-filename>.
Here <source-filename> refers to the main name of the source-file without file extension (e.g., the core names-
pace defines nwb.ephys.yaml as source which would be stored in /specifications/core/2.0.1/nwb.
ecephys).

2.3. Caching format specifications 7



NWB Storage, Release v1.0.0

8 Chapter 2. HDF5



CHAPTER 3

Release Notes

3.1 NWB:N - v2.1.0

Added documentation for new NWB key ‘object_id’ (see also format release notes for NWB 2.1.0: https://
nwb-schema.readthedocs.io/en/latest/format_release_notes.html#september-2019).

3.2 NWB:N - v2.0.1

Added missing documentation on how format specification are cached in HDF5.

3.3 NWB:N - v2.0.0

Created separate reStructuredText documentation (i.e., this document) discuss and govern storage-related concerns. In
particular this documents describes how primitives and keys described via the specification language are mapped to
storage, in particular HDF5.

3.4 NWB:N - v1.0.x and earlier

For version 1.0.x and earlier, there was no official separate document governing NWB:N storage concerns as HDF5
was the only supported storage backend with implicit mapping between HDF5 types and NWB:N language primitives.

9

https://nwb-schema.readthedocs.io/en/latest/format_release_notes.html#september-2019
https://nwb-schema.readthedocs.io/en/latest/format_release_notes.html#september-2019


NWB Storage, Release v1.0.0

10 Chapter 3. Release Notes



CHAPTER 4

Credits

4.1 Authors

4.1.1 NWB:N: Version 2.0.0 and later

Documentation for storage of Version 2 of the NWB:N format and later have been created by Oliver Ruebel and
Andrew Tritt et al. in collaboration with the NWB:N community.

4.2 Acknowledgments

For details on the partners, funders, and supporters of NWB:N please the http://www.nwb.org/ project website. For
specific contributions to the format specification and this document see the change logs of the Git repository at
https://github.com/NeurodataWithoutBorders/nwb-schema .

11



NWB Storage, Release v1.0.0

12 Chapter 4. Credits



CHAPTER 5

Legal

Contents

• Credits

– Authors

* NWB:N: Version 2.0.0 and later

– Acknowledgments

• Legal

– Copyright

– Licence

5.1 Copyright

“nwb-schema” Copyright (c) 2017-2020, The Regents of the University of California, through Lawrence Berkeley
National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software, please contact Berkeley Lab’s Innovation &
Partnerships Office at IPO@lbl.gov.

NOTICE. This Software was developed under funding from the U.S. Department of Energy and the U.S. Government
consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the
public, prepare derivative works, and perform publicly and display publicly, and to permit other to do so.

13

mailto:IPO@lbl.gov


NWB Storage, Release v1.0.0

5.2 Licence

“nwb-schema” Copyright (c) 2017-2020, The Regents of the University of California, through Lawrence Berkeley
National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.

14 Chapter 5. Legal



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15


	NWB:N Storage
	What is the role of data storage?
	How are NWB:N files stored?
	Are backends other than HDF5 supported?

	HDF5
	Format Mapping
	Key Mapping
	Groups
	Datasets
	Attributes
	Links
	dtype mappings

	Caching format specifications

	Release Notes
	NWB:N - v2.1.0
	NWB:N - v2.0.1
	NWB:N - v2.0.0
	NWB:N - v1.0.x and earlier

	Credits
	Authors
	NWB:N: Version 2.0.0 and later

	Acknowledgments

	Legal
	Copyright
	Licence

	Indices and tables

